数据挖掘选择题(数据挖掘选择判断题)

什么叫数据挖掘?

1、数据挖掘(Data Mining,简称DM),是指从大量的数据中,挖掘出未知的且有价值的信息和知识的过程。2 机器学习 与 数据挖掘 与数据挖掘类似的有一个术语叫做”机器学习“,这两个术语在本质上的区别不大,如果在书店分别购买两本讲数据挖掘和机器学习的书籍,书中大部分内容都是互相重复的。

2、数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。

3、数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

聚类数据挖掘对聚类的典型要求如下

1、在进行聚类数据挖掘时,对聚类算法提出了一系列关键要求:可扩展性: 面对大规模数据集,如包含数百万对象的数据库,传统的聚类算法可能产生偏颇结果。因此,需要具备高度可扩展性的算法,以适应大数据的挑战。

2、聚类算法对数据处理的要求主要包括:可伸缩性: 针对大规模数据集,如数百万对象,需要具备高度可扩展性的算法,以避免因样本偏大而导致的有偏结果。适应不同类型属性: 除了数值数据,算法还需要处理二元、分类、序数和混合数据类型,以满足不同应用需求。

3、可伸缩性:许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。我们需要具有高度可伸缩性的聚类算法。 处理不同类型数据的能力:许多算法被设计用来聚类数值类型的数据。

数据挖掘的方法有哪些?

1、遗传算法 遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。

2、分类分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。

3、数据挖掘的的方法主要有以下几点: 分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。