大数据分析面临的问题(大数据分析所面临的问题)

我国大数据中心发展面临哪些问题与挑战

1、我国大数据中心发展面临的问题与挑战主要包括以下几个方面: 数据安全与隐私保护:随着大数据的广泛应用,数据安全和隐私保护成为重要的问题。大数据中心需要确保数据不被未经授权的人员或组织获取,同时也要符合相关的隐私保护法规和标准。

2、决策成本高:传统的大数据由于部署成本高,导致企业在做决策时面临比较大的决策成本,一方面是前期投入太大,短期内看不到效果,长期以来效果如何也很难说清楚。

3、挑战一:业务部门没有清晰的大数据需求很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。

4、挑战一:大数据行业发展良莠不济 我国大数据仍处于起步发展阶段,在“万众创新,大众创业”的大环境下,大量的大数据企业不断涌现,但企业发展良莠不济。挑战二:大数据创新、创业盲目 企业在创新、创业过程,由于缺乏对大数据产业链的认识,出现许多跟风扎堆的情况,没有有效发挥自身优势,造成巨大的资源浪费。

5、我国大数据战略实施面临的五大挑战我国实施国家大数据战略的新成效近几年,在国家政策支持下,我国大数据战略取得多方面成效:一是产业集聚效应初步显现。国家八个大数据综合实验区建设促进了具有地方特色产业集聚。

6、数据存储挑战:随着技术的进步,数据量已经从TB级别跃升至PB、EB甚至更高。传统的数据存储方法已经无法满足大数据分析的需求,这要求我们采用动态处理技术来应对数据的变化和处理需求。同时,由于数据量巨大,传统的结构化数据库已不再适用,我们需要探索新的大数据存储模式,这是当前亟待解决的问题。

大数据目前有什么问题?

资源调度难题:大数据的特点之一是其生成的时间点和数据量都是不可预测的。因此,我们需要建立一个动态响应机制,以合理调度有限的计算和存储资源。同时,考虑如何在成本最小化的同时获得理想的分析结果也是一个重要问题。 分析工具的局限性:随着数据分析技术的发展,传统的软件工具已经不再适用。

分析资源调度问题:大数据产生的时间点,数据量都是很难计算的,这就是大数据的一大特点,不确定性。所以我们需要确立一种动态响应机制,对有限的计算、存储资源进行合理的配置及调度。另外,如何以最小的成本获得最理想的分析结果也是一个需要考虑的问题。

社会透明度问题:大数据技术的发展带来了社会透明度的提升,但同时也暴露了个人隐私,增加了社会不稳定性。 国家机密保护挑战:大数据技术的发展对国家机密保护提出了新的要求。我国需要加强技术手段,保护国家信息安全,抵御外部威胁。

大数据时代的一个特征是,重大发现的数量被数据扩张的噪音淹没了。大数据不能解决大问题 如果你只是想分析哪些邮件产生了最多的竞选捐款,你可以做一个随机对照试验。但如果目标是在衰退期间刺激经济,你不会找到一个平行世界社会作为对照组。

现如今,大数据技术存在最大的两个弊端就是隐私和限制。

【答案】:C 各平台的空间定位精度不同是目前数据存在问题之一,同时用户刻意提供不正确或者假冒(lcati spfig)的地理坐标,也会影响数据的空间定位。这些不确定空间位置信息对于研究结果质量的影响将会被放大。

大数据分析会遇到哪些问题?

1、很难获得用户操作行为完整日志 现阶段数据剖析以统计为主,如用户量、使用时间点时长和使用频率等。一是需求辨认用户,二是记录行为简单引起程序运转速度,三是开发本钱较高。产品缺少中心方针 这需求剖析人员满足的了解产品。

2、分析目标不明确 “海量的数据其实并不能产生海量的财富。” 许多数据分析人员未能确立明确的分析目标,因此在处理海量数据时容易迷失方向。要么收集了错误的数据,要么数据收集不完整,这些都会影响分析的准确性。 数据收集过程中的误差 在数据收集阶段,软件或硬件的错误可能会引入误差。

3、获取完整的用户行为日志具有一定挑战性。目前的数据分析主要基于统计方法,涉及用户数量、使用时长和频率等指标。然而,日志的获取面临三方面的问题:首先是识别用户的需求;其次是行为记录的简化可能导致分析的局限性;最后是开发成本的考量。 产品缺乏明确的目标。这要求分析人员对产品有深入的理解。

大数据挖掘分析处理的难题有哪些?

短期内或许难以发挥作用 数据剖析需求不断的试错,很难在短期内证明方法的有效性,或许难以取得其他人物的支持。

信息收集:物联网与基础设施建设之间的悖论 在信息收集方面当前,我国正在着力于大数据研究来推进物联网的发展,然而与物联网的发展相悖论的便就是我国的基础信息设施建设。

分析资源调度问题:大数据产生的时间点,数据量都是很难计算的,这就是大数据的一大特点,不确定性。所以我们需要确立一种动态响应机制,对有限的计算、存储资源进行合理的配置及调度。另外,如何以最小的成本获得最理想的分析结果也是一个需要考虑的问题。

基因大数据深度挖掘面临挑战 作为一种新型基因检测技术,基因测序能从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性、个体的行为特征及行为合理性。基因测序技术能锁定个人病变基因,予以提前预防和治疗。正因如此,今年华大基因的上市,就引发了资本市场的热烈追捧。

数据存储挑战:随着技术的进步,数据量已经从TB级别跃升至PB、EB甚至更高。传统的数据存储方法已经无法满足大数据分析的需求,这要求我们采用动态处理技术来应对数据的变化和处理需求。同时,由于数据量巨大,传统的结构化数据库已不再适用,我们需要探索新的大数据存储模式,这是当前亟待解决的问题。

如果大数据能够在传统领域之外进一步解决世界性难题,结果会怎么样?到目前为止,IBM、谷歌以及惠普等巨头级企业已经开始对这类高难度挑战发起冲击,其中包括分析繁忙的高速公路上到底会有多少车辆通过某条桥梁,或者计算会有多少用户查看网络浏览器中的一条小广告。

未来社会发展中,大数据的发展将面临什么风险与机遇?

1、大数据挑战和机遇并存,大数据在未来几年的发展将从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。未来的大数据发展依然存在诸多挑战,但前景依然非常乐观。

2、大数据时代 机遇与风险 大数据时代的到来,对于犯罪案件破获、新型产品研发等都起到了其不可替代的作用,但问题也随之而来,最终数据的采集者如何使用其所收集到的数据,将对社会及个人带来不一样的效果。

3、大数据技术为经济社会发展带来创新活力的同时,也使数据安全、个人信息保护乃至大数据平台安全等面临新威胁与新风险。海量多源数据在大数据平台汇聚,来自多个用户的数据可能存储在同一个数据池中,并分别被不同用户使用,极易引发数据泄露风险。

4、针对大数据时代的基本特征,加强全方位创新。包括IBM、EMC、HP、Microsoft等在内的IT巨头,纷纷加速收购相关大数据公司进行技术整合,寻找数据洪流大潮中新的立足点。而涉及人工智能、机器学习等新技术的创新应用,已初显效益。(4)将大数据时代全方位创新工作和智慧城市发展紧密结合。