Copyright © 2022-2024 Corporation. All rights reserved. 深圳KAIYUN体育有限公司 版权所有
1、下面这段是apriori算法中由2频繁项集找k频繁项集的程序,程序中有两个问题:似乎while循环的K永远都是固定的,也就是都是频繁2项集的个数。
2、关联分析是一种在大规模数据集中寻找有趣关系的任务。Apriori是解决这一问题的基本算法。这个算法也是数据挖掘的入门算法。Apriori算法的功能是寻找所有支持度不小于minsup的项集。项集的支持度是指包含该项集的事务所占所有事务的比例。频繁项集就是指满足给定的最小支持度的项集。
3、最基本的方法是计算各种统计变量(平均值、方差等)和察看数据的分布情况。你也可以用数据透视表察看多维数据。数据的种类可分为连续的,有一个用数字表示的值(比如销售量)或离散的,分成一个个的类别(如红、绿、蓝)。
4、· 直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 · 间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。
5、提到关联规则算法,一般会想到Apriori或者FP,一般很少有想到HotSpot的,这个算法不知道是应用少还是我查资料的手段太low了,在网上只找到很少的内容,这篇http://wiki.pentaho.com/display/DATAMINING/HotSpot+Segmentation-Profiling ,大概分析了一点,其他好像就没怎么看到了。
而 Apriori算法则是经典的挖掘频繁项集的关联规则算法,它通过层层迭代来寻找频繁项集,最后输出关联规则:首先扫描数据集,得到 1-频繁项集,记为 L1,通过合并 L1得到 2-频繁项集 L2,再通过 L2找到 L3,如此层层迭代,直到找不到频繁项集为止。
编写Python代码实现Apriori算法。代码需要注意如下两点:由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换;由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。
Apriori算法原理 基本流程:扫描历史数据,并对每项数据进行频率次数统计。构建候选集 ,并计算其支持度,即数据出现频率次数与总数的比。
Apriori,主体分两步走:a. 根据 原始数据 得到1 - k项集,再根据support(支持度)得到频繁1项集,频繁2项集,频繁3项集... 一直到频繁k项集,这一步是运算量最大的,也是hadoop集群的瓶颈。b. 根据 置信度 confidence ,得到所有强规则。
1、理解关联规则apriori算法:Apriori算法是第一个关联规则挖掘算法,也是最经典的算法,它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接【类矩阵运算】与剪枝【去掉那些没必要的中间结果】组成。
2、Apriori算法是种挖掘关联规则的频繁项集算法,一种最有影响的挖掘布尔关联规则频繁项集的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。
3、关联规则的核心在于理解商品A购买后,商品B出现的概率。我们关注三个关键指标:支持度(商品组合出现的频率)、置信度(购买A后B出现的概率)、提升度(A对B购买概率的影响)。例如,牛奶的支持度是80%,而牛奶与面包的组合支持度则是60%。置信度则表明,购买牛奶后购买面包的概率为50%,反之则为67%。
4、经典的关联规则挖掘算法包括Apriori算法和FP-growth算法。apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集;而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率,但是apriori的算法扩展性较好,可以用于并行计算等领域。
1、Apriori算法是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。
2、Apriori算法是种挖掘关联规则的频繁项集算法,一种最有影响的挖掘布尔关联规则频繁项集的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。
3、apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集;而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率,但是apriori的算法扩展性较好,可以用于并行计算等领域。
4、Apriori algorithm是关联规则里一项基本算法。是由Rakesh Agrawal和Ramakrishnan Srikant两位博士在1994年提出的关联规则挖掘算法。关联规则的目的就是在一个数据集中找出项与项之间的关系,也被称为购物蓝分析 (Market Basket analysis),因为“购物蓝分析”很贴切的表达了适用该算法情景中的一个子集。
5、理解关联规则apriori算法:Apriori算法是第一个关联规则挖掘算法,也是最经典的算法,它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接【类矩阵运算】与剪枝【去掉那些没必要的中间结果】组成。
6、Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。这个算法是比较复杂的,但也是十分实用的。
1、要计算支持度(Support)、置信度(Confidence)与提升度(Lift),首先需要知道Freq(A∩B)、Freq(A)、Freq(B)和总笔数数值,那么需要对商品进行排列组合。
2、而 Apriori算法则是经典的挖掘频繁项集的关联规则算法,它通过层层迭代来寻找频繁项集,最后输出关联规则:首先扫描数据集,得到 1-频繁项集,记为 L1,通过合并 L1得到 2-频繁项集 L2,再通过 L2找到 L3,如此层层迭代,直到找不到频繁项集为止。
3、这条关联规则的置信度:confidence = support(A并B)/suport(A)。 强关联规则:如果存在一条关联规则,它的支持度和置信度都大于预先定义好的最小支持度与置信度,我们就称它为强关联规则。
4、Apriori算法是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。